83. Physical Properties and Chemical Constitution. Part I. Esters of Normal Dibasic Acids and of Substituted Malonic Acids.

By Arthur I. Vogel.

ThE objects of this series of investigations are to obtain accurate values of certain physical properties (densities, refractive indices, molecular dispersions, surface tensions, dipole moments, viscosities, and heats of combustion) of a variety of highly purified organic compounds with a view to test known relationships between these properties and chemical constitution and to deduce new ones. Such a reinvestigation is all the more necessary in that many physical data in the literature have been obtained with compounds for which no criteria of purity are given.

Measurements of the refractive indices, $n_{\mathrm{C}}^{20^{\circ}}, n_{\mathrm{D}}^{20^{\circ}}, n_{\mathrm{F}^{\circ}}^{20^{\circ}}, n_{\mathrm{G}^{\prime}}^{200^{\circ}}$, and of the density and surface tension over a range of temperature of a homologous series of methyl and ethyl esters of normal dibasic acids, and of the methyl esters of substituted malonic acids, are now recorded. All the esters were prepared from the pure acids of definite and sharp m. p. Karvonen (Acad. Sci. Fennicae, 1918, 10A, No. 5, 1) carried out a series of careful measurements of the refractive indices and of $d_{4^{\circ}}^{20^{\circ}}$ for the esters of the normal dibasic acids, which are in good agreement with the present results, but apart from this work and from certain isolated determinations [molecular refractivities of methyl dimethyl- and diethyl-malonates (von Auwers, Ber., 1913, 46, 511 ; compare Smyth and Walls, J. Amer. Chem. Soc., 1931, 53,529) and parachors of methyl malonate, ethyl malonate, succinate, and sebacate (see Rep. Brit. Assoc., 1932, 264, which contains a complete bibliography)], no systematic attempt to investigate the physical properties of these three series of compounds appears to have been made.

Whilst the present work was in progress, Beck, Macbeth, and Pennycuick (J., 1932, 2258) determined the parachors inter alia of methyl (282.5) and ethyl malonate (360.4), methyl dimethyl- (354.0), ethyl- (364•2), and n-propyl-malonates (393•3). Surface tensions were determined by the maximum bubble-pressure method (Sugden, J., 1922, 121, 858; 1924, 125, 27), and the densities in " pycnometers of different capacities " at 30° for methyl and ethyl malonates, but no details of temperature, surface tension, or density are given for the substituted malonates. In the absence of criteria of purity of the esters, there is little to be gained in discussing the measurements, but the parachor values are given in parentheses for comparison with those deduced in the present paper.

The results for the methyl and ethyl esters of the normal dibasic acids are summarised in Tables I and II. Table I contains the molecular refractivities for the C, D, F, and G'

Table I.

Substance. Methyl malonate			$\left[R_{L}\right]_{\mathrm{C}}$.	Δ.	$\left.{ }^{2} R_{L}\right]_{\mathrm{D}}$.	Δ.	$\left[R_{L}\right]_{\mathrm{F}}$.	Δ.	$\begin{aligned} & {\left[R_{L}\right] a^{\prime} .} \\ & 29 \cdot 19 \end{aligned}$	
			$28 \cdot 49$	$4 \cdot 37$	28.62	$4 \cdot 39$	28.92	$4 \cdot 43$		45
,	succinate		$32 \cdot 86$	$4 \cdot 41$	$33 \cdot 01$	$4 \cdot 42$	$33 \cdot 35$	4.48	$33 \cdot 64$	4.45
",	glutarate		$37 \cdot 27$ 41.99	4.71 4.72	$37 \cdot 43$ $42 \cdot 18$	$4 \cdot 75$	$37 \cdot 83$ 42.61	$4 \cdot 78$	$38 \cdot 16$ 42.98	$4 \cdot 82$ $4 \cdot 82$
"	adipate		$41 \cdot 99$ $46 \cdot 66$	4.67	$42 \cdot 18$ 46	4.69	$42 \cdot 61$ $47 \cdot 37$	$4 \cdot 76$	$42 \cdot 98$ 47.72	4.74
"	pimelate		$46 \cdot 66$ $51 \cdot 32$	$4 \cdot 66$	$46 \cdot 87$ 51.55	$4 \cdot 68$	$47 \cdot 37$ $52 \cdot 10$	$4 \cdot 73$	$47 \cdot 72$ 52.56	$4 \cdot 84$
"	suberate		$\begin{aligned} & 51 \cdot 32 \\ & 55 \cdot 90 \end{aligned}$	$4 \cdot 58$	56.14	$4 \cdot 59$	56.72	$4 \cdot 62$	57.24	$4 \cdot 68$
			Mean	$4 \cdot 57$		$4 \cdot 59$		$4 \cdot 63$		$4 \cdot 675$
Ethyl m	malonate		$37 \cdot 72$		$37 \cdot 89$	$4 \cdot 46$	$38 \cdot 30$	4•50	$38 \cdot 62$	
,,	succinate		$42 \cdot 16$	4.57	$42 \cdot 35$	4.58	$42 \cdot 80$	4.63	$43 \cdot 18$	$4 \cdot 66$
,,	glutarate		$46 \cdot 73$	$4 \cdot 55$	$46 \cdot 93$	$4 \cdot 58$	47.43	4.62	$47 \cdot 83$	$4 \cdot 65$ 4.67
,	adipate.		51.28	4.69	51.51	$4 \cdot 72$	52.05	4.75	52.50	$4 \cdot 67$ $4 \cdot 80$
,	pimelate		55.97	4.67	56.23	$4 \cdot 70$	56.80	4.76	57.30	$4 \cdot 80$ 4.78
,,	suberate		$60 \cdot 64$	2×4.63	$60 \cdot 93$ $70 \cdot 18$	2×4.63	61.56 70.93	2×4.69	${ }^{62} \cdot 7.08$	$\begin{array}{r} \\ \hline \times 4.72\end{array}$
,'	sebacate		$69 \cdot 89$	9	$70 \cdot 18$		70		71.52	

lines at 20°; the mean differences for CH_{2} in the two series are in sufficiently close agreement with the widely employed constants of Eisenlohr (Z. physikal. Chem., 1910, 75, 585 ; $1912,79,129$), viz., $\mathrm{H}_{\mathrm{O}} 4 \cdot 598, \mathrm{Na}_{\mathrm{D}} 4 \cdot 618, \mathrm{H}_{\mathrm{F}} 4 \cdot 668, \mathrm{H}_{G^{\prime}}, 4 \cdot 710$, to justify the use of the latter
figures, for the present, in the computation of molecular refractivities. Swarts (J. Chim. physique, $1923,20,33$) found $\mathrm{H}_{0} 4 \cdot 618, \mathrm{H}_{\mathrm{F}} 4 \cdot 688$, and $\mathrm{H}_{\mathrm{G}}, 4 \cdot 725$ at 20°, as deduced by temperature correction of determinations at $79 \cdot 5^{\circ}$, and Mercks, Verhulst, and Bruylants (Bull. Soc. chim. Belg., 1933, 42, 177) found $\mathrm{H}_{\mathrm{a}} 4 \cdot 615, \mathrm{Na}_{\mathrm{D}} 4 \cdot 632, \mathrm{H}_{\mathrm{F}} 4 \cdot 685$, and $\mathrm{H}_{\mathrm{G}}, 4 \cdot 721$ at 15°. Table II contains the values of the molecular refraction coefficients, $M n_{10}^{20^{\circ}}$ (Eisenlohr, Fortschr. Chem., 1925, 18, B, Heft 9), the parachors, and the dispersions $\left[R_{L}\right]_{\mathrm{F}-0}$ and $\left[R_{L}\right]_{\sigma^{\prime}-0}$. The mean value for CH_{2} of $M n_{\mathrm{D}}^{20 \circ}$ is $20 \cdot 63$. Eisenlohr (loc. cit.) gives 20.56 and his constants will therefore be retained pending the accumulation of further data. The mean increment for CH_{2} in the parachor is $40 \cdot 3$, which is appreciably higher than that (39.0) employed by Sugden (J., 1924, 125, 1180 ; "The Parachor and Valency," 1929, 34 ; Rapports Institut Internat. Chim. Solvay, 1931, 4, 296) as a basis for his calculations of atomic and structural parachors. Mumford and Phillips (J., 1929, 2112) have pointed out that Sugden's low value may be partly due to his use of CH_{2} differences derived

Table II.

from both normal and branched-chain compounds and suggest that a more probable value, based largely on Hunten and Maass's surface-tension determinations on a series of fatty acids (J. Amer. Chem. Soc., 1929, 51, 153), is 40 units. On this basis they have recalculated the atomic and structural parachor constants and have also introduced new " strain constants." Their values, although more accurate than those of Sugden, will doubtless require slight modification, but this will be discussed as trustworthy data accumulate in subsequent papers of this series.

Hennant-Roland and Lek (Bull. Soc. chim. Belg., 1931, 40, 177; Lek, Diss., Bruxelles, 1930) have carried out measurements on a series of homologous n-alkyl bromides, iodides, and chlorides from which the parachors have been calculated (Rep. Brit. Assoc., loc. cit.). Their results are collected in Table III. The mean difference for CH_{2} is greater than 39.0 and the figures support the view that Sugden's original value is too low.

Table III.

	Bromides.		Iodides.		Chlorides.	
	P.	Δ.	P.	Δ.	P.	Δ.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{X}$	165.7		187.0		151.6	
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{X}$	$205 \cdot 3$	${ }_{38.2}$	226.0	${ }_{38} 9$	$187 \cdot 0$	${ }_{42}{ }^{36}$
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{X}$	$243 \cdot 5$	$40 \cdot 1$	$264 \cdot 7$		$230 \cdot 5$	
$\mathrm{C}_{5} \mathrm{C}_{1} \mathrm{H}_{11} \mathrm{X}$	$283 \cdot 6$ 322.8	49-2	$344 \cdot 1$	$2 \times 39 \cdot 7$		
$\mathrm{C}_{\mathrm{C}_{6} \mathrm{H}_{125} \mathrm{H}_{15} \mathrm{X}}$	$322 \cdot 8$ 363.0	$40 \cdot 2$	$\stackrel{384}{ }{ }_{384}$	$40 \cdot 4$		
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{X}$	$402 \cdot 4$	$39 \cdot 4$				

The atomic parachor for hydrogen calculated from the most authoritative values for the normal hydrocarbons is 14.4 (Table IV); the corresponding value for carbon is therefore 11.5 . The figures for the last three hydrocarbons have been added for purposes of comparison and indicate clearly that the constants apply to compounds of high molecular
weight. These constants differ considerably from the values $\mathrm{H}=17 \cdot 1$ and $\mathrm{C}=4.8$ originally calculated by Sugden (loc. cit.). It should, however, be pointed out that the

Table IV.
Deduction of Atomic Parachor of Hydrogen.

Compound.	Observers.	P, obs.	$n \times \mathrm{CH}_{2}$.	2 H.
$\mathrm{C}_{2} \mathrm{H}_{8} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	M. and W. (1, 2)	110.5	$80 \cdot 6$	$29 \cdot 9$
$\mathrm{C}_{3} \mathrm{H}_{8} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	M. and W. (1, 2)	$150 \cdot 8$	$120 \cdot 9$	$29 \cdot 9$
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	C. and M. (2)	$190 \cdot 3$	$161 \cdot 2$	$29 \cdot 1$
$n-\mathrm{C}_{8} \mathrm{H}_{14}$	H.-R. and L. (3)	$270 \cdot 4$	$241 \cdot 8$	$28 \cdot 6$
$n-\mathrm{C}_{7} \mathrm{H}_{18}$	E. and C. (2)	$310 \cdot 8$	$282 \cdot 1$	$28 \cdot 7$
$n-\mathrm{C}_{8} \mathrm{H}_{18}$	H.-R. and L. (3)	$351 \cdot 0$	$322 \cdot 4$	$28 \cdot 6$
$n-\mathrm{C}_{10} \mathrm{H}_{22}$	H.-R. and L. (3)	$429 \cdot 7$	$403 \cdot 0$	$26 \cdot 7$
			Mean	$28 \cdot 8$
$n-\mathrm{C}_{26} \mathrm{H}_{54} \ldots \ldots \ldots \ldots \ldots \ldots .$.	S. and K. $(2,3)$	1082	1048	24
$n-\mathrm{C}_{32} \mathrm{H}_{66}$	H. and M. $(2,3)$	1322	1290	32
$n-\mathrm{H}_{60} \mathrm{H}_{123} \ldots \ldots \ldots \ldots$.	S. and K. $(2,3)$	2480	2418	62

The initials give the reference to the observers, and the number in parentheses that of the parachor calculation.
M. and W., Maass and Wright, J. Amer. Chem. Soc., 1921, 43, 1098; C. and M., Coffin and Maass, ibid., 1928, 50, 1427; H.-R. and L., Hennant-Roland and Lek, loc. cit.; E. and C., Edgar and Calingaert, J. Amer. Chem. Soc., 1929, 51, 1540 ; S. and K., Schenk and Kintzinger, Rec. trav. chim., 1923, 42, 759; H. and M., Hunten and Maass, loc. cit.; (1), Sugden; (2), Mumford and Phillips; (3), Rep. Brit. Assoc.; locc. cit.
new values of the atomic parachors based on $\mathrm{CH}_{2}=40.3$ are regarded as preliminary and will be considered again when the investigation of other homologous series has been completed. The atomic parachor for carbon is very sensitive to small differences in the CH_{2} value and further independent determinations are therefore necessary.

The results for the methyl esters of the substituted malonic acids, including the cyclic $1: 1$-dicarboxylic acids, are summarised in Table V. The calculated values of $M n_{\mathrm{D}}^{200^{\circ}}$ and $\left[R_{L}\right]_{\mathrm{D}}$ were derived from Eisenlohr's constants; no allowance was made for the presence

Table V.

	$M n_{1}^{20}{ }^{\circ}$.		$\left[R_{L}\right]_{\text {D }}$.		P.	$\left[R_{L}\right]_{\text {F-C }}$.	$\left[R_{L}\right]_{\mathbf{G}}{ }^{\prime} \mathbf{C}$.
Methyl ester.	Obs.	Calc.	Obs.	Calc.			
Malonate	186.71	187.65	28.62	28.60	$283 \cdot 0$	$0 \cdot 43$	$0 \cdot 70$
Methylmalonate	$206 \cdot 61$	$208 \cdot 20$	$33 \cdot 36$	$33 \cdot 22$	321.9	$0 \cdot 49$	$0 \cdot 80$
Ethylmalonate	$227 \cdot 09$	$228 \cdot 76$	$37 \cdot 97$	37-83	360.2	$0 \cdot 58$	$0 \cdot 91$
n-Propylmalonate	247-50	$249 \cdot 32$	$42 \cdot 52$	$42 \cdot 45$	$397 \cdot 9$	$0 \cdot 65$	$1 \cdot 12$
Dimethylmalonate	226.55	$228 \cdot 76$	37.73	37•83	355.8	$0 \cdot 47$	$0 \cdot 90$
Methylethylmalonate.	247.54	$249 \cdot 32$	$42 \cdot 13$	42.45	$391 \cdot 3$	$0 \cdot 61$	$1 \cdot 00$
Methyl-n-propylmalonate	$267 \cdot 98$	$269 \cdot 88$	$46 \cdot 88$	$47 \cdot 07$	$431 \cdot 2$	$0 \cdot 71$	$1 \cdot 11$
Ethyl-n-propylmalonate	$289 \cdot 07$	$290 \cdot 44$	51.44	51.69	$468 \cdot 8$	$0 \cdot 77$	1-16
Di- n-propylmalonate \ldots......	311-94	$310 \cdot 95$	56.07	56.31	$505 \cdot 1$	$0 \cdot 84$	1.35
cycloPropane-1 : 1-dicarboxyl- ate	227.75	$233 \cdot 76$	$36 \cdot 39$	$35 \cdot 63$	$339 \cdot 3$	$0 \cdot 59$	0.85
cycloButane-1:1-dicarboxylate	248.01	$254 \cdot 32$	40.59	$40 \cdot 25$	$374 \cdot 8$	$0 \cdot 62$	$1 \cdot 00$
cycloPentane-1 : 1-dicarboxylate	$269 \cdot 37$	274-88	44.82	$44 \cdot 87$	408.0	$0 \cdot 66$	$1 \cdot 05$
cycloHexane-1 : I-dicarboxylate	$291 \cdot 23$	$295 \cdot 44$	49•16	$49 \cdot 49$	$442 \cdot 2$	$0 \cdot 73$	1•14

of ring systems. The significance of these results will be discussed in connexion with those of the corresponding substituted glutaric acids in the next paper of this series. Attention is, however, directed to the CH_{2} differences for the parachor in the series malonic, methyl-, ethyl-, and n-propyl-malonic esters, which are $38 \cdot 9,38 \cdot 3$, and 37.7 respectively; these are, in qualitative accordance with the valency-deflexion effect, less than the normal value (40.3) in a polymethylene chain.

The methyl esters were selected partly owing to the comparative ease of their preparation and partly in the hope that reduction in the volume of the ester groupings would render the influence of substituents on the central carbon atom more apparent.

Experimental.

Measurement of Refractive Indices and Dispersions.-These were carried out on the latest type of Zeiss Pulfrich refractometer. For the D-line a Hilger sodium lamp was used in the early determinations, which was later replaced by a Zeiss electric sodium lamp. An H-type of Geissler hydrogen tube was employed for the measurements at the C, F, and G^{\prime} lines. All the determinations were carried out at $20^{\circ} \pm 0.05^{\circ}$, unless otherwise stated; accurate temperature control was ensured by surrounding the cell containing the liquid under investigation with a hollow cylinder in addition to the usual silver-plated cylinder immersed almost to the surface of the liquid in the cell, and water at 20°, from an electrically controlled thermostat, was circulated through both by means of a small pump.

Measurement of Surface Tension and of Density over a Range of Temperature.-The surface tension was determined by the method of Richards, Speyers, and Carver (J. Amer. Chem. Soc., 1924, 46, 1196) in an apparatus constructed entirely of Pyrex glass, modified as previously described by the author (J., 1928, 2027). The Pyrex capillary tubes were carefully selected from a large batch of specially drawn tubing for the uniformity of their bore.

The difference in capillary rise was measured by means of a travelling microscope, provided with spirit levels both on the observation tube and on the base, reading directly to 0.01 mm . Both meniscuses could be observed simultaneously, and adjustment to the central cross wires was made by means of a specially designed fine adjustment screw. The constant of the apparatus, K, was determined both with conductivity water ($\gamma_{20^{\circ}}=72 \cdot 80$, and temperature coefficient $=0.15$ dyne/cm./degree) and with different samples of benzene (Kahlbaum's "pure for molecular weight determinations" and sodium-dried A.R.) $\left(\gamma_{20^{\circ}}=28.88\right.$, and values at other temperatures from Sugden, J., 1924, 125, 27), and the corrections for the meniscus were applied by means of Poisson's equation as before (J., 1928, 2028) ; the corrected difference in height between the meniscuses in the capillary tubes, H, is obtained from the observed difference, h (in mm.), by subtracting $0 \cdot 24$. The mean values for the three apparatus employed were: A, $1.8545 ; \mathrm{B}, 2 \cdot 5142$; and C, 1.8725 .

Measurements were conducted at room temperature and at those of boiling chloroform and of boiling trichloroethylene, and the exact temperature in each of the last two cases was measured on a small Anschütz thermometer with enclosed graduations immersed in the liquid under examination. Before the measurements at room temperature, the surface-tension apparatus was inclined several times to ensure thorough " wetting" of the sides of the capillaries. Between each series the apparatus was rinsed with rectified spirit, then with water, kept in dichromate mixture for 24 hours, thoroughly washed successively with water, rectified spirit, and absolute alcohol, and finally dried at 100°. Both the rectified spirit and the absolute alcohol were distilled through a plug of purified glass wool to remove any finely divided solids present : the first and last 10% of the distillate were discarded.

The densities were determined with a silica or Pyrex pycnometer of about 1.5 c.c. capacity, which was calibrated with conductivity water. Measurements at 20° were carried out by immersion in a thermostat at $20^{\circ} \pm 0.01^{\circ}$, and at other temperatures by completely surrounding the pycnometer by a closely fitting double-walled glass vessel, the annular space being filled with a suitable vapour. The exact temperature was read on a small Anschütz thermometer immersed in the vapour.

In the tabulated results below, t is the temperature, h the observed difference in height (in mm.) in the two arms of the U-tube, H the corrected value, $d_{48}^{\text {to }}$ the density (g./c.c.; calculated from the observed densities by assuming a linear variation with temperature), and γ is the surface tension (dynes $/ \mathrm{cm}$.) computed from the equation $\gamma=K H d$. In calculating the parachor, the density of the vapour has been neglected. The number in parentheses following the value of γ_{20} is the temperature coefficient of surface tension.

Preparation of Acids.-The preparations of those marked with an asterisk have already been described (J., 1929, 1478, 1488), and only improvements are indicated. The preparations marked with a dagger were carried out by Mr. G. H. Jeffery.
${ }^{*}$ Malonic acid. M. p. 135° (decomp.).
\dagger Succinic acid. Prepared by the hydrolysis of succinonitrile, m. p. 54°, with 50% sulphuric acid (see below); recrystallised from acetone, m. p. 185-185.5 ${ }^{\circ}$.
\dagger Glutaric acid. $\alpha \gamma$-Dibromopropane, b. p. $163-167^{\circ} / 771 \mathrm{~mm}$., was converted into the nitrile (" Organic Syntheses," $1925,5,103$) in 60% yield. A middle fraction, b. p. $149-150^{\circ} / 14 \mathrm{~mm}$., was hydrolysed by heating under reflux for 10 hours with 15 times its weight of 50% sulphuric acid, and the acid isolated by ether extraction after saturation with ammonium sulphate; the
yield of crude product, m. p. 97-97.5 ${ }^{\circ}$, was $\mathbf{8 5} \%$. Recrystallisation from chloroform gave m. p. $97.5-98^{\circ}$.
\dagger Adipic acid. A commercial sample was recrystallised from acetone; m. p. 151-152 ${ }^{\circ}$.
\dagger^{*} Pimelic acid. From $\alpha \varepsilon$-dibromopentane (Vogel, J., 1929, 728); m. p. 105-106 ${ }^{\circ}$.
\dagger Suberic acid. Ethyl adipate, b. p. $138^{\circ} / 19 \mathrm{~mm}$., was reduced with sodium and absolute alcohol to hexamethylene glycol, b. p. $144-146^{\circ} / 15 \mathrm{~mm}$., the latter converted successively into the dibromide, b. p. $134-136^{\circ} / 20 \mathrm{~mm}$., the dinitrile (by aqueous-alcoholic potassium cyanide), b. p. $178-180^{\circ} / 15 \mathrm{~mm}$., and suberic acid (by 50% sulphuric acid). Recrystallised from acetone, it had m. p. 141- 142°.
\dagger^{*} Azelaic acid. Prepared by the oxidation of ricinoleic acid with potassium permanganate by Maquenne's method (Bull. Soc. chim., 1899, 21, 1061). The crude product was recrystallised three times from benzene-light petroleum (b. p. $40-60^{\circ}$), and the resultant acid, m. p. 98$100^{\circ}$, was converted into the methyl ester, b. p. $154-155^{\circ} / 18 \mathrm{~mm}$., which was hydrolysed with excess of ethyl-alcoholic potassium hydroxide, and the acid recrystallised successively from A.R. formic acid (d 1-2), and benzene-light petroleum. It then had m. p. 106-107 ${ }^{\circ}$.
\dagger Sebacic acid. Boots's pure acid was recrystallised from acetone, m. p. $132-133^{\circ}$.
${ }^{*}$ Methylmalonic acid, m. p. 132° (decomp.), and *ethylmalonic acid, m. p. 115° (decomp.), gave satisfactory analyses by combustion.
$\dagger \mathrm{n}$-Propylmalonic acid. Ethyl malonate was converted into ethyl n-propylmalonate, b. p. $220-222^{\circ} / 758 \mathrm{~mm}$., and the latter hydrolysed with excess of ethyl-alcoholic potassium hydroxide for 6 hours. The acid was recrystallised from benzene, m. p. 95-96 (decomp.).
${ }^{*}$ Dimethylmalonic acid, m. p. 193.5° (decomp.), ${ }^{*}$ methylethylmalonic acid, m. p. 121°, *diethylmalonic acid, m. p. 127°, *ethyl- n-propylmalonic acid, m. p. 116°, and ${ }^{* d i}$ di n-propylmalonic acid, m. p. 161° (decomp.).

Methyl-n-propylmalonic acid (with R. J. Tudor, M.Sc.). Ethyl methylmalonate was converted by sodium ethoxide and n-propyl iodide into ethyl methyl- n-propylmalonate, b. p. $220-223^{\circ}$. Solutions of the ester ($\mathbf{3 7} \mathrm{g}$.) in rectified spirit ($\mathbf{7 4} \mathrm{g}$.) and potassium hydroxide (38 g .) in water (76 g .) were mixed, and the mixture refluxed for 48 hours, the product neutralised with concentrated liydrochloric acid (litmus) and a saturated solution of calcium chloride (20 g .) added; the calcium salt of the acid was precipitated. The filtrate was extracted repeatedly with ether, the calcium salt suspended in the ethereal extract, and concentrated hydrochloric acid added slowly until the solid was decomposed. The acid, m. p. 95-96 ${ }^{\circ}$ (25.5 g .; 93% yield), from the dried ethereal extract was recrystallised from benzene-light petroleum (b. p. $60-80^{\circ}$) and then from dry benzene. It had m. p. 96°, unaffected by further recrystallisation. Stiassny (Monatsh., 1891, 12, 593) gives m. p. 106-107.
\dagger cycloPropane-1:1-dicarboxylic acid. An equimolecular mixture of redistilled ethylene dibromide and ethyl malonate was added to sodium ethoxide solution (from absolute alcohol distilled over calcium), the whole stirred and refluxed for 5 hours, and the alcohol distilled off. Water was then added, the precipitated oil isolated by ether extraction, dried, and distilled three times under ordinary pressure, the fraction, b. p. 216- $220^{\circ} / 764 \mathrm{~mm}$., being collected (32% yield). This was hydrolysed by refluxing for 24 hours with excess of aqueous-alcoholic potassium hydroxide; the alcohol was removed, the residue extracted with ether, the extract acidified with dilute sulphuric acid, and the acid isolated by ether extraction. On recrystallisation from benzene-ether-light petroleum (b. p. 60-80), it melted at $135-136^{\circ}$, softening at 120°, the softening occurring at 127° after two triturations with boiling benzene. The acid was then esterified by refluxing for 7 hours with a mixture of dry methyl alcohol, benzene, and concentrated sulphuric acid, and the ester, b. p. $196-198^{\circ} / 757 \mathrm{~mm}$., hydrolysed as above to an acid, which, after one crystallisation from benzene-ether-light petroleum (b. p. $60-80^{\circ}$), had m. p. 136-137 .
†cycloButane-1:1-dicarboxylic acid. $\alpha \gamma$-Dibromopropane was condensed with ethyl sodiomalonate and the product worked up as described under the cyclopropane acid. A fraction, b. p. $110-115^{\circ} / 17 \mathrm{~mm}$., after two distillations, was obtained in 38% yield; this was hydrolysed with 4 mols. of aqueous-alcoholic potassium hydroxide for 18 hours, and the acid crystallised once from benzene-ether-light petroleum (b. p. 60-80) and twice from benzene-ether to remove the last traces of any malonic acid; m. p. 157°.
\dagger^{*} cycloPentane-1: 1-dicarboxylic acid. Tetramethylene glycol, b. p. 127-129 $/ 12 \mathrm{~mm}$., was obtained in 70% yield by the reduction of ethyl succinate with sodium and absolute alcohol (compare Bennett and Mosses, J., 1931, 1697 : the quantities of sodium and alcohol recommended by these authors for 0.1 mol . of ester can be employed for 0.4 mol . without appreciably affecting the yield), and then converted in the dibromide, b. p. $82-84^{\circ} / 12 \mathrm{~mm}$., in 72% yield by refluxing
with excess of constant b. p. hydrobromic acid containing 40% sulphuric acid [compare Kamm and Marvel, J. Amer. Chem. Soc., 1920, 42, 307; the use of a greater proportion of sulphuric acid (Goldsworthy, J., 1931, 482) leads to charring and reduction of yield to 48%] and isolation by extraction with light petroleum (b. p. $40-60^{\circ}$) in which the glycol is insoluble. The dibromide was condensed with ethyl sodiomalonate as described above, and the fraction, b. p. $115-125^{\circ} / 20 \mathrm{~mm}$. (largely $120^{\circ} / 20 \mathrm{~mm}$.), isolated in 55% yield. This was hydrolysed with aqueous-alcoholic potassium hydroxide, and the acid crystallised twice from benzene-etherlight petroleum (b. p. $40-60^{\circ}$), and once from benzene-ether; m. p. 187°.
\dagger^{*} cycloHexane-1: 1-dicarboxylic acid. From $\alpha \varepsilon$-dibromopentane and ethyl sodiomalonate; m. p. 178° (decomp.).

Preparation of Esters.-These were prepared by refluxing the acid with a mixture of the pure dry alcohol, pure sodium-dried benzene, and concentrated sulphuric acid for several hours (compare Vogel, J., 1928, 2021) ; thrice the volume of water was added, and the benzene layer containing most of the ester separated. The aqueous solution was saturated with sodium chloride and extracted twice with ether, and the ethereal extract combined with the benzene solution. After drying (sodium sulphate) and removal of solvents, the ester was usually distilled under diminished pressure. For the determination of the physical properties, the pure esters were redistilled and a middle fraction collected. The yields were satisfactory except for methyl malonate and methylmalonate, which are being investigated further. For the highly substituted esters somewhat longer refluxing was necessary to ensure a good yield. The methyl alcohol was a synthetic product, containing less than 0.1% of acetone, and was dried over lime, and the large middle fraction employed. Ethyl alcohol was Burroughs's absolute ethyl alcohol.

It was soon noticed that the pure esters changed slightly, as indicated by the refractive index, when preserved in vessels of ordinary glass. All operations were therefore conducted in Pyrex vessels, in which the specimens remained unchanged.

Methyl malonate. $\quad M=132.06$; b. p. $180^{\circ} / 770 \mathrm{~mm}$; $n_{\mathrm{C}} 1.41172, n_{\mathrm{D}} 1.41376, n_{\mathrm{F}} 1.41880$, $n_{\mathrm{G}}, 1 \cdot 42318$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 1527, d_{4^{\circ}}^{63 \cdot+^{\circ}} 1 \cdot 1066, d_{4^{8}}^{8 \cdot 7^{\circ}} 1 \cdot 0774$.

$$
\gamma_{20^{\circ}}=37 \cdot 31(0 \cdot 125) . \quad \text { App. B. }
$$

t.	h.	H.	$d_{4}{ }^{\circ}$.	γ.	P.	t.	h.	H.	${ }^{1}{ }^{\circ}{ }^{\circ}$.	γ.	P.
$15 \cdot{ }^{\circ}$	$13 \cdot 27$	13.03	$1 \cdot 1576$	37.92	$283 \cdot 1$	$85.4{ }^{\circ}$	$11 \cdot 13$	10.89	1.0784	29:53	282.2
$62 \cdot 6$	11.73	11.49	1-1074	$31 \cdot 99$	$283 \cdot 6$					Mean	283.0

Methyl succinate. $\quad M=146.08$; b. p. $194^{\circ} / 754 \mathrm{~mm}$.; $n_{\mathrm{c}} 1.41757, n_{\mathrm{D}} 1.41965, n_{\mathrm{F}} 1.42468$, $n_{6^{\circ}}, 1 \cdot 42888$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 1192, d_{4^{\circ}}^{6332^{\circ}} 1 \cdot 0757, d_{4^{\circ}}^{8.0^{\circ}} 1 \cdot 0548$.

$\gamma_{20^{\circ}}=35 \cdot 61$ (0.119). App. B.											
$22 \cdot 9$	$13 \cdot 16$	12.92	1-1163	$36 \cdot 26$	321.1	$85 \cdot 0$	11/14	$10 \cdot 90$	$1 \cdot 0548$	28.91	321-1
$63 \cdot 5$	11.86	11.62	$1 \cdot 0754$	31.42	$321 \cdot 6$					Mean	$321 \cdot 3$

Methyl glutarate. $M=160 \cdot 10$; b. p. $109^{\circ} / 21 \mathrm{~mm}$; $n_{\mathrm{c}} 1.42208, n_{\mathrm{D}} 1.42415, n_{\mathrm{F}} 1.42925$, $n_{\mathrm{a}^{\prime}} 1-43362$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0874, n_{4^{\circ}}^{633^{\circ}} 1 \cdot 0450, d_{4^{\circ}}^{85} 6^{\circ} 1 \cdot 0239$.

	$\gamma_{20^{\circ}}=36.23$ (0.120). App. A.										
$22 \cdot 7$	18.09	17.85	$1 \cdot 0847$	35.91	$361 \cdot 3$	$85 \cdot 0$	15.28	$15 \cdot 04$	$1 \cdot 0245$	28.58	$361 \cdot 3$
$62 \cdot 7$	16.29	16.05	$1 \cdot 0456$	31-12	$361 \cdot 7$					Mean	$361 \cdot 4$

Methyl adipate. $M=174 \cdot 11$; b. p. $122^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{C}} 1.42600, n_{\mathrm{D}} 1.42815, n_{\mathrm{F}} 1.43330$,

$\gamma_{20^{\circ}}=35.66$ (0.112). App. В.											
$23 \cdot 0$	$13 \cdot 50$	13.26	1.0595	35.32	$400 \cdot 6$	$85 \cdot 0$	11.55	$11 \cdot 31$	$0 \cdot 9966$	28.34	403•1
62.5	12.26	12.02	$1 \cdot 0217$	30.88	$401 \cdot 7$					Mean	401•8

Methyl pimelate. $\quad M=188 \cdot 13$; b. p. $128^{\circ} / 16 \mathrm{~mm}$.; $n_{\mathrm{C}} 1.42853, n_{\mathrm{D}} 1.43065, n_{\mathrm{F}} 1.43588$, $n_{\mathrm{G}}, 1.43967$. Densities determined: $d_{1^{\circ}}^{20^{\circ}} 1.0383, d_{1^{\circ}}^{62 \cdot 5^{\circ}} 1.0012, d_{1^{\circ}}^{85 \cdot 6^{\circ}} 0.9817$.

				$\gamma_{20^{\circ}}$	35.58	A					
$17 \cdot 6$	$13 \cdot 94$	$13 \cdot 70$	$1 \cdot 0406$	35.84	$442 \cdot 4$	$85 \cdot 1$	11.93	11•69	$0 \cdot 9822$	$28 \cdot 87$	444.0
$62 \cdot 4$	12.58	12.34	$1 \cdot 0016$	31.08	$443 \cdot 5$					M	443-3

Methyl suberate. $M=202 \cdot 14$; b. p. $148^{\circ} / 20 \mathrm{~mm}$.; $n_{\mathrm{C}} 1.43105, n_{\mathrm{D}} 1.43326, n_{\mathrm{F}} 1.43864$, $n_{G^{\prime}} 1 \cdot 44308$. Densities determined: $d_{1^{\circ}}^{10^{\circ}} 1 \cdot 0198, d_{1^{\circ}}^{6012^{\circ}} 0.9839, d_{1^{\circ}}^{85 \cdot 6} 0.9606$.

				$\gamma_{20}{ }^{\circ}$	$35 \cdot 43$.					
17.4°	19.08	18.84	1-0221	35.71	$483 \cdot 5$	$85 \cdot 6$	16•17	$15 \cdot 93$	$0 \cdot 9606$	28.38	$485 \cdot 7$
$64 \cdot 4$	$17 \cdot 06$	16.82	$0 \cdot 9828$	$30 \cdot 66$	484.0					Mean	$484 \cdot 4$

Vogel: Physical Properties and Chemical Constitution. Part I. 339
Methyl azelate. $M=216 \cdot 16$; b. p. $156^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{C}} 1 \cdot 43386, n_{\mathrm{D}} 1 \cdot 43607, n_{\mathrm{F}} 1 \cdot 44134$, $n_{\mathrm{G}^{\prime}} \mathrm{l} \cdot 44588$. Densities determined : $d_{4^{\circ}}^{44^{\circ}} 1 \cdot 0069, d_{4^{\circ}}^{193 \cdot 4^{\circ}} 0 \cdot 9680, d_{4^{\circ}}^{36 \cdot 3^{\circ}} 0.9490$.

$\gamma_{20}{ }^{\circ}=35 \cdot 35(0 \cdot 109) . \quad$ App. A.											
t.	h.	H.	$\mathrm{C}^{2}{ }^{\circ}$.	γ.	P.	t.	h.	H.	$d_{\text {do }}{ }^{\text {c }}$.	γ -	P.
$15 \cdot 6^{\circ}$	$19 \cdot 35$	$19 \cdot 11$	1-0109	35.83	$523 \cdot 1$	$87 \cdot{ }^{\circ}$	16.28	16.04	0.9478	$28 \cdot 19$	$525 \cdot 5$
$63 \cdot 1$	17.30	$17 \cdot 06$	0.9683	$30 \cdot 63$	$525 \cdot 2$					Mean	$524 \cdot 6$

Ethyl malonate. $\quad M=160 \cdot 10$; b. p. $197^{\circ} / 759 \mathrm{~mm}$; $n_{\mathrm{C}} 1.41179, n_{\mathrm{D}} 1.41386, n_{\mathrm{F}} 1.41897$, $n_{\mathrm{G}}, 1 \cdot 42313$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0550, d_{d^{\circ}}^{6 \cdot 2^{\circ}} 1 \cdot 0104, d_{4^{\circ}}^{85 \cdot 3^{\circ}} 0.9878$.

				$\gamma_{20^{\circ}}$	31.84	App					
$17 \cdot 0$	12.33	12.09	$1 \cdot 0580$	32-16	$360 \cdot 1$	$85 \cdot 3$	$10 \cdot 33$	$10 \cdot 09$	0.9878	$25 \cdot 06$	$362 \cdot 4$
$62 \cdot 2$	$11 \cdot 01$	10.77	$1 \cdot 0104$	27.36	$362 \cdot 1$					Mean	$361 \cdot 5$

Ethyl succinate. $M=174 \cdot 11$; b. p. $108^{\circ} / 17 \mathrm{~mm}$; $n_{\mathrm{C}} 1.41763, n_{\mathrm{D}} 1.41975, n_{\mathrm{F}} 1.42484$,

	$\gamma_{20^{\circ}}=31.75$ (0.104). App. A.										
$19 \cdot 3$	16.73	16.49	1-0405	31.82	$397 \cdot 4$	$85 \cdot 3$	$14 \cdot 19$	13.95	$0 \cdot 9696$	25.08	$401 \cdot 9$
$63 \cdot 4$	14.97	$14 \cdot 73$	$0 \cdot 9948$	27-18	$399 \cdot 6$					Mean	$400 \cdot 0$

Ethyl glutarate. $\quad M=188 \cdot 13$; b. p. $118^{\circ} / 15 \mathrm{~mm} . ; n_{\mathrm{c}} 1.42188, n_{\mathrm{D}} 1.42395, n_{\mathrm{F}} 1.42916$,

$\gamma_{20^{\circ}}=32.34(0 \cdot 102) . \quad$ App. B.											
$17 \cdot 5$	12.88	12.64	$1 \cdot 0252$	32.59	438.4	$86 \cdot 0$	$10 \cdot 87$	$10 \cdot 63$	$0 \cdot 9610$	25.68	$440 \cdot 7$
63•1	11.53	11.29	$0 \cdot 9838$	27.93	$439 \cdot 6$					Mean	$439 \cdot 6$

Ethyl adipate. $\quad M=202 \cdot 14$; b. p. $132^{\circ} / 15 \mathrm{~mm}$; $n_{\mathrm{C}} 1.42548, n_{\mathrm{D}} 1 \cdot 42765, n_{\mathrm{F}} 1 \cdot 43284$,

Ethyl pimelate. $\quad M=216 \cdot 16 ;$ b.p. $149^{\circ} / 18 \mathrm{~mm} . ; n_{\mathrm{C}} 1 \cdot 42770, n_{\mathrm{D}} 1 \cdot 42985, n_{\mathrm{F}} 1.43494$, $n_{\mathrm{G}^{\prime}} 1 \cdot 43929$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9929, d_{4^{6}}^{64 \cdot 2^{\circ}} 0.9553, d_{4^{35} \cdot 2^{\circ}} 0.9365$.

$\gamma_{20}=32.63$ (0.101). App. C.											
$17 \cdot 0$	17.89	$17 \cdot 65$	0.9956	32.93	$520 \cdot 1$	85.8	15.04	$14 \cdot 80$	0.9360	25.94	$521 \cdot 2$
$63 \cdot 2$	15.91	$15 \cdot 67$	$0 \cdot 9562$	28.06	$520 \cdot 3$					Mean	$520 \cdot 5$

Ethyl suberate. $\quad M=230 \cdot 18 ;$ b. p. $164^{\circ} / 22 \mathrm{~mm}$; $n_{\mathrm{C}} 1 \cdot 43013, n_{\mathrm{D}} 1 \cdot 43236, n_{\mathrm{F}} 1 \cdot 43762$,

$\gamma_{20^{\circ}}=32.79(0.102) . \quad$ App. B.											
$21 \cdot 3$	13.50	13.26	0.9797	$32 \cdot 66$	$561 \cdot 7$	86.3	11.57	$11 \cdot 33$	$0 \cdot 9267$	26.40	$563 \cdot 0$
$63 \cdot 6$	$12 \cdot 32$	12.08	$0 \cdot 9453$	28.71	563.6					Mean	$562 \cdot 8$

Ethyl sebacate. $M=258.21$; b. p. $183^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{C}} 1.43445, n_{\mathrm{D}} 1.43657, n_{\mathrm{F}} 1.44194$,

Methyl methylmalonate. $\quad M=146.08$; b. p. $176-177^{\circ} / 735 \mathrm{~mm}$; $n_{\mathrm{C}} 1 \cdot 41226, n_{\mathrm{D}} 1.41436$, $n_{\mathrm{F}} 1 \cdot 41930, n_{G^{\prime}} 1 \cdot 42360$; $\left[R_{L}\right]_{\mathrm{c}} 33 \cdot 21,\left[R_{L}\right]_{\mathrm{D}} 33 \cdot 36,\left[R_{L}\right]_{\mathrm{F}} 33 \cdot 70,\left[R_{L}\right]_{\mathrm{a}}, 34 \cdot 01$. Densities determined : $d_{4^{\circ}}^{200^{\circ}} 1 \cdot 0952, d_{4^{\circ}}^{6 \cdot 3^{\circ}} 1 \cdot 0473, d_{1^{\circ}}^{86 \cdot 1^{\circ}} 1 \cdot 0237$.

$\gamma_{20^{\circ}}=32 \cdot 81$ (0.120). App. B.											
$19 \cdot 0$	12.55	$12 \cdot 31$	$1 \cdot 0693$	33.93	$321 \cdot 6$	$86 \cdot 6$	$10 \cdot 34$	$10 \cdot 10$	$1 \cdot 0232$	25.98	322-1
$64 \cdot 3$	11.03	$10 \cdot 79$	$1 \cdot 0473$	28.41	$322 \cdot 0$					Mean	$321 \cdot 9$

Methyl ethylmalonate. $\quad M=160 \cdot 10$; b. p. $189^{\circ} / 760 \mathrm{~mm} . ; n_{\mathrm{C}} 1.41632, n_{\mathrm{D}} 1.41845, n_{\mathrm{F}}$ $1.42356, n_{\mathrm{G}}, 1 \cdot 42776 ;\left[R_{L}\right]_{\mathrm{C}} 37 \cdot 80,\left[R_{L}\right]_{\mathrm{D}} 37 \cdot 97,\left[R_{L}\right]_{\mathrm{F}} 38 \cdot 38,\left[R_{L}\right]_{\mathrm{G}}, 38 \cdot 71$. Densities determined : $d_{4}^{200} 1 \cdot 0637, d_{4^{6}}^{6 \cdot 8^{\circ}} 1 \cdot 0227, d_{4}^{6 \cdot 6} 0.9973$.

				$\gamma_{20}{ }^{\circ}$	$32 \cdot 72$. A					
19.5	$12 \cdot 49$	12.25	$1 \cdot 0642$	32.78	$360 \cdot 0$	87.0	$10 \cdot 38$	$10 \cdot 14$	$0 \cdot 9963$	25.40	$360 \cdot 8$
$64 \cdot 0$	11.05	10.81	$1 \cdot 0215$	27.76	$359 \cdot 8$					Mean	$360 \cdot 2$

Methyl n-propylmalonate. $\quad M=174 \cdot 11$; b. p. $203^{\circ} / 756 \mathrm{~mm} . ;{ }^{\prime} \mathrm{c} 1 \cdot 41930, u_{\mathrm{D}} 1 \cdot 42155$, $n_{\mathrm{F}} 1 \cdot 42658, n_{\mathrm{G}}, 1 \cdot 43203 ;\left[R_{L}\right]_{\mathrm{C}} 42 \cdot 31,\left[R_{L}\right]_{\mathrm{D}} 42 \cdot 52,\left[R_{L}\right]_{\mathrm{F}} 42 \cdot 96,\left[R_{L}\right]_{\mathrm{G}} \cdot 43 \cdot 43$. Densities determined : $d_{t^{\circ}}^{2100^{\circ}} 1 \cdot 0398, d_{1^{\circ}}^{\left[13 \cdot 16^{\circ}\right.} 0.9984, d_{4^{\circ}}^{85 \cdot 6^{\circ}} 0.9756$.

	$\gamma_{20^{\circ}}=31 \cdot 62$ (0.103). App. В.										
22-1	12.27	12.03	$1 \cdot 0379$	$31 \cdot 39$	397-1	$86 \cdot 1$	$10 \cdot 34$	$10 \cdot 10$	$0 \cdot 9751$	$24 \cdot 76$	398.3
$62 \cdot 3$	11.09	$10 \cdot 85$	$0 \cdot 9987$	27.24	$398 \cdot 3$					Mean	$397 \cdot 9$

Methyl dimethylmalonate. $\quad M=160 \cdot 10$; b. p. $78 \cdot 5^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{c}} 1 \cdot 41292, n_{\mathrm{D}} 1 \cdot 41505$, $n_{\mathrm{F}} 1 \cdot 42001, n_{\mathrm{G}}, 1 \cdot 42421 ;\left[R_{L}\right]_{\mathrm{C}} 37 \cdot 57,\left[R_{L}\right]_{\mathrm{D}} 37 \cdot 73,\left[R_{L}\right]_{\mathrm{F}} 38 \cdot 14,\left[R_{L}\right]_{\mathrm{G}^{\prime}} 38 \cdot 47$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0624, d_{4^{6}}^{61 \cdot \succ^{\circ}} 1 \cdot 0200, d_{4^{\circ}}^{85 \cdot \gamma^{\circ}} 0.9928$.

				$\gamma_{20}{ }^{\circ}$	31.05	A					
$24 \cdot 7$	$15 \cdot 80$	$15 \cdot 56$	$1 \cdot 0577$	$30 \cdot 52$	$355 \cdot 8$	$85 \cdot 8$	$13 \cdot 12$	$12 \cdot 88$	$0 \cdot 9928$	23.71	$355 \cdot 9$
$63 \cdot 2$	14.12	$13 \cdot 88$	$1 \cdot 0186$	26.22	355.7					Mean	$355 \cdot 8$

Methyl methylethylmalonate. $\quad M=174 \cdot 11$; b. p. $90^{\circ} / 21 \mathrm{~mm} . ; n_{\mathrm{c}} 1.41956, n_{\mathrm{D}} 1 \cdot 42175$, $n_{\mathrm{F}} 1 \cdot 42663, n_{\mathrm{G}}, 1 \cdot 43096 ;\left[R_{L}\right]_{\mathrm{c}} 41 \cdot 94,\left[R_{L}\right]_{\mathrm{D}} 42 \cdot 13,\left[R_{L}\right]_{\mathrm{F}} 42 \cdot 55,\left[R_{L}\right]_{\mathrm{G}}, 42 \cdot 94$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0497, d_{4^{\circ}}^{696^{\circ}} 1 \cdot 0040, d_{4^{\circ}}^{85 \cdot 2^{\circ}} 0.9835$.

$\gamma_{20^{\circ}}=30 \cdot 84(0 \cdot 110) . \quad$ App. B.											
$23 \cdot 5$	11.82	11.58	1•0459	$30 \cdot 45$	$391 \cdot 1$	$85 \cdot 6$	$9 \cdot 87$	$9 \cdot 63$	0.9831	23-80	$391 \cdot 2$
$62 \cdot 0$	10.57	$10 \cdot 33$	$1 \cdot 0046$	26.09	391.7					Mean	$391 \cdot 3$

Methyl diethylmalonate. $\quad M=188.13$; b. p. $97^{\circ} / 17 \mathrm{~mm}$.; $n_{\mathrm{C}} 1.42551, n_{\mathrm{D}} 1 \cdot 42765, n_{\mathrm{F}}$ $1.43269, n_{\mathrm{G}}, 1.43705 ;\left[R_{L}\right]_{\mathrm{c}} 46 \cdot 30,\left[R_{L}\right]_{\mathrm{D}} 46 \cdot 51,\left[R_{L}\right]_{\mathrm{F}} 46.98,\left[R_{L}\right]_{\mathrm{G}}, 47 \cdot 40$. Densities determined : $d_{t^{\circ}}^{20^{\circ}} 1 \cdot 0400, d_{4^{\circ}}^{G 1 \cdot} \cdot \psi^{\circ} 0.9951, d_{4}^{x 5} \cdot x^{\circ} 0 \cdot 9694$.

$\gamma_{20^{\circ}}=31.07(0.110) . \quad$ App. A.											
21-9	16.27	16.03	$1 \cdot 0380$	$30 \cdot 86$	$427 \cdot 1$	85.5	$13 \cdot 57$	13.33	0.9694	23.97	$429 \cdot 2$
$62 \cdot 0$	$14 \cdot 54$	14:30	$0 \cdot 9949$	26.38	428.5					Mean	$428 \cdot 3$

Methyl methyl-n-propylmalonate. $\quad M=188 \cdot 13$; b. p. $101^{\circ} / 20 \mathrm{~mm}$; $n_{\mathrm{c}} 1 \cdot 42229, n_{\mathrm{D}} 1 \cdot 42445$, $n_{\mathrm{F}} 1 \cdot 42969, n_{\mathrm{G}^{\prime}} 1.43375 ;\left[R_{L}\right]_{\mathrm{C}} 46 \cdot 67,\left[R_{L}\right]_{\mathrm{D}} 46 \cdot 88,\left[R_{L}\right]_{\mathrm{F}} 47 \cdot 38,\left[R_{L}\right]_{\mathrm{G}^{\prime}} 47 \cdot 78$. Densities deter-

$\gamma_{20^{\circ}}=30 \cdot 49(0 \cdot 100) . \quad$ App. B.											
$26 \cdot 0$	11.92	11.66	$1 \cdot 0196$	$29 \cdot 89$	$431 \cdot 4$	88.2	$10 \cdot 00$	$9 \cdot 76$	$0 \cdot 9625$	$23 \cdot 62$	$430 \cdot 9$
$64 \cdot 0$	10.76	$10 \cdot 52$	0.9861	26.08	431.2					Mean	$431 \cdot 2$

Methyl ethyl-n-propylmalonate. $\quad M=202 \cdot 14$; b. p. $107^{\circ} / 17 \mathrm{~mm}$; $n_{\mathrm{c}} 1 \cdot 42782, n_{\mathrm{D}} 1 \cdot 43005$, $n_{\mathrm{F}} 1 \cdot 43517, n_{\mathrm{G}}, 1 \cdot 43898 ;\left[R_{L}\right]_{\mathrm{c}} 51 \cdot 20,\left[R_{L}\right]_{\mathrm{D}} 51 \cdot 44,\left[R_{L}\right]_{\mathrm{F}} 51 \cdot 97,\left[R_{L}\right]_{\mathrm{G}}, 52 \cdot 36$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0154, d_{4^{52}}^{5 \cdot 8^{\circ}} 0.9756, d_{4^{82} 10^{\circ}}^{8.9510} 0$.

$17 \cdot 0$	12.29	12.05	$1 \cdot 0181$	$\begin{array}{r} \gamma_{20^{\circ}} \\ 30 \cdot 84 \end{array}$	$\begin{aligned} & 30 \cdot 53 \\ & 468 \cdot 0 \end{aligned}$	$\begin{array}{r} \mathrm{A} \\ 85 \cdot 0 \end{array}$	$\begin{aligned} & \text { B. } \\ & 10 \cdot 24 \end{aligned}$	$10 \cdot 00$	$0 \cdot 9510$	23.91	$470 \cdot 0$
$62 \cdot 4$	10.90	$10 \cdot 66$	0.9760	$26 \cdot 16$	468.3					Mean	$468 \cdot 8$

Methyl di-n-propylmalonate. $\quad M=216 \cdot 16 ;$ b. p. $120.5^{\circ} / 20 \mathrm{~mm} . ; n_{\mathrm{c}} 1.42972, n_{\mathrm{D}} 1 \cdot 43196$, $n_{\mathrm{F}} 1.43712, n_{\mathrm{G}}, 1.44155 ;\left[R_{L}\right]_{\mathrm{c}} 55 \cdot 81,\left[R_{L}\right]_{\mathrm{D}} 56 \cdot 07,\left[R_{L}\right]_{\mathrm{F}} 56 \cdot 65,\left[R_{L}\right]_{\mathrm{G}^{\prime}} 57 \cdot 16$. Densities determined : $d_{4^{\circ}}^{300^{\circ}} 0.9999, d_{4^{2}}^{93 \cdot 2^{\circ}} 0.9630, d_{4^{\circ}}^{8.5} 0^{\circ} 0.9388$.

				γ_{20}	20 28						
$21 \cdot 0$	11.86	$11 \cdot 62$	$0 \cdot 9990$	$29 \cdot 19$	$502 \cdot 9$	$85 \cdot 5$	$10 \cdot 17$	$9 \cdot 93$	$0 \cdot 9383$	23.43	$506 \cdot$
$63 \cdot 2$	10.87	$10 \cdot 63$	$0 \cdot 9630$	25.74	$505 \cdot 6$					Mean	$505 \cdot$

Methyl cyclopropane-1: 1-dicarboxylate. $M=158.08$; b. p. $95^{\circ} / 20 \mathrm{~mm}$; $n_{\mathrm{c}} 1 \cdot 43833$, $n_{\mathrm{D}} 1 \cdot 44070, n_{\mathrm{F}} 1 \cdot 44647, n_{\mathrm{G}} \cdot 1 \cdot 45126 ;\left[R_{L}\right]_{\mathrm{C}} 36 \cdot 21,\left[R_{L}\right]_{\mathrm{D}} 36 \cdot 39,\left[R_{L}\right]_{\mathrm{F}} 36 \cdot 80,\left[R_{L}\right]_{\mathrm{G}}$ 37.06. Den-

$\gamma_{20}{ }^{\circ}=36 \cdot 42(0 \cdot 118) . \quad$ App. A.											
$23 \cdot 3$	$17 \cdot 24$	$17 \cdot 00$	$1 \cdot 1430$	36.03	$338 \cdot 9$	85.9	14.58	$14 \cdot 34$	1-0774	28.65	339•5
62-1	$15 \cdot 60$	$15 \cdot 36$	1-1028	31.41	$339 \cdot 4$					Mean	339

Methyl cyclobutane-1: 1-dicarboxylate. $\quad M=172 \cdot 10 ;$ b. p. $102^{\circ} / 21 \mathrm{~mm} . ; \quad n_{\mathrm{C}} 1 \cdot 43881$, $n_{\mathrm{D}} 1 \cdot 44110, n_{\mathrm{F}} 1 \cdot 44661, n_{\mathrm{G}}, 1 \cdot 45217 ;\left[R_{L}\right]_{\mathrm{C}} 40 \cdot 41,\left[R_{L}\right]_{\mathrm{D}} 40 \cdot 59,\left[R_{L}\right]_{\mathrm{F}} 41 \cdot 03,\left[R_{L}\right]_{\mathrm{G}^{\prime}} 41 \cdot 41$. Den-

				γ_{20}	35.31	A	B.				
$20 \cdot 0$	12.78	12.54	$1 \cdot 1198$	$35 \cdot 31$	$374 \cdot 6$	$85 \cdot 1$	$10 \cdot 68$	$10 \cdot 44$	1.0516	$27 \cdot 60$	$375 \cdot 1$
62\%	11.44	$11 \cdot 20$	$1 \cdot 0780$	$30 \cdot 36$	$374 \cdot 8$					Mean	$374 \cdot 8$

Methyl cyclopentane-1:1-dicarboxylate. $\quad M=186 \cdot 11 ;$ b. p. $113^{\circ} / 21 \mathrm{~mm}$; $n_{\mathrm{c}} 1 \cdot 44519$, $n_{\mathrm{D}} 1 \cdot 44742, n_{\mathrm{F}} \mathrm{l} \cdot 45287, n_{\mathrm{G}^{\prime}} 1 \cdot 45740 ;\left[R_{L}\right]_{\mathrm{C}} 44 \cdot 63,\left[R_{L}\right]_{\mathrm{D}} 44 \cdot 82,\left[R_{L}\right]_{\mathrm{F}} 45 \cdot 29,\left[R_{L}\right]_{\mathrm{G}^{\prime}} 45 \cdot 68$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 1104, d_{4^{62}}^{622^{\circ}} 1 \cdot 0738, d_{4^{*}}^{86 \cdot 2^{\circ}} 1 \cdot 0428$.

				$\gamma_{20}{ }^{\circ}$	$35 \cdot 20$. A					
$20 \cdot 4$	$17 \cdot 30$	$17 \cdot 06$	$1 \cdot 1111$	$35 \cdot 15$	$408 \cdot 2$	$85 \cdot 8$	$14 \cdot 60$	$14 \cdot 36$	$1 \cdot 0432$	27.78	$409 \cdot 6$
62.2	15.55	$15 \cdot 31$	$1 \cdot 0738$	$30 \cdot 49$	$407 \cdot 3$					Mean	$408 \cdot 0$

Methyl cyclohexane-1: 1-dicarboxylate. $M=200 \cdot 13$; b. p. $126.5^{\circ} / 20 \mathrm{~mm}$; $n_{\mathbf{c}} 1 \cdot 45297$, $n_{\mathrm{D}} 1 \cdot 45522, n_{\mathrm{F}} 1 \cdot 46081, n_{\mathrm{G}}, 1 \cdot 46531 ;\left[R_{L}\right]_{\mathrm{G}} 48 \cdot 96,\left[R_{L}\right]_{\mathrm{D}} 49 \cdot 16,\left[R_{L}\right]_{\mathrm{F}} 49 \cdot 69,\left[R_{L}\right]_{\mathrm{a}} \cdot 50 \cdot 10$. Densities determined : $d_{4^{20}}^{200^{\circ}} 1 \cdot 1046, d_{4^{6}}^{4 \cdot 0^{\circ}} 1 \cdot 0654, d_{t^{\circ}}^{8 \cdot 4^{\circ}} 1 \cdot 0463$.

				$\gamma_{20}{ }^{\circ}$	35.53	App					
$20 \cdot 0$	17.58	17.34	1-1046	35.53	$442 \cdot 2$	$85 \cdot 9$	14.97	14.73	$1 \cdot 0455$	28.56	$442 \cdot 5$
$62 \cdot 5$	15•81	15:57	$1 \cdot 0667$	30•80	442.0					Mean	$442 \cdot 2$

The author's thanks are due to Prof. D. R. Boyd, D.Sc., Ph.D., for the loan of the Pulfrich refractometer, to Mr. G. H. Jeffery, B.Sc., A.I.C., for assistance in the preparation of materials, and to the Dixon Fund Committee of the University of London and Imperial Chemical Industries for grants.
Woolwich Polytechnic, London, S.E. 18.

